<u>Informal things to know about the Dirac Delta Function</u>

<u>Informal things to know about the SHIFTED Dirac Delta Function</u>

<u>Informal things to know about the (shifted) Dirac Delta Function</u>

<u>Ex 0</u>: Calculate the following integrals...

a)
$$\int_{-\infty}^{\infty} \cos t \ \delta(t) \ dt$$

b)
$$\int_2^{10} \ln t \, \delta(t - e^2) \, dt$$

<u>Informal things to know about the (shifted) Dirac Delta Function</u>

Ex 0.5: Find the Laplace Transform of the generalized function $t^2\delta(t-3) - (\cos t)\delta(t)$

<u>Informal things to know about the (shifted) Dirac Delta Function</u>

Example 1 A mass attached to a spring is released from rest 1 m below the equilibrium position for the mass–spring system and begins to vibrate. After π seconds, the mass is struck by a hammer exerting an impulse on the mass. The system is governed by the symbolic initial value problem

(11)
$$\frac{d^2x}{dt^2} + 9x = 3\delta(t - \pi)$$
; $x(0) = 1$, $\frac{dx}{dt}(0) = 0$,

where x(t) denotes the displacement from equilibrium at time t. Determine x(t).

A little more of the story...

Physics: IMPULSE (constant force)

A little more of the story...

Physics: IMPULSE (variable force)

A little more of the story...

Dirac Delta function is "like" a limit of a sequence of functions

A little more of the story...

What does it mean to solve a DE with a generalized function?

A little more of the story...

Why is
$$\int_{-\infty}^{\infty} f(t)\delta(t) dt = f(0)$$
?